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Abstract-  Doppler ultrasound instruments, used for the detection 
and monitoring of vascular disease, require a means of separating 
the large, low frequency Doppler signal from the vessel wall from 
the signal arising from blood followed by a means of analysing the 
blood flow signal in order to characterise the flow conditions. This 
is normally achieved by using a high-pass filter that removes the 
signal reflected from the vessel wall. Unfortunately, the filter also 
removes the low frequency Doppler signals arising from slow mov-
ing blood. A better signal segmentation method that reduces the loss 
of signal from slowly moving blood is needed to permit the meas-
urement of lower blood velocities. A signal simulator that generates 
Doppler signals that include the contributions from blood and vessel 
wall will be very useful for the development of new Doppler signal 
segmentation methods. This work presents a new simulator incorpo-
rating the contribution of blood and vessel wall movements; the 
characteristics of the simulator output signal are similar to those 
found in practice. 
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I. INTRODUCTION 
 

Cardiovascular disease leading to heart attacks and embolic 
strokes amongst others is a leading cause of death and severe 
disability in the population of the so-called "developed 
world''. The disease is characterised by plaque on the walls of 
arteries, disturbing the flow of blood, creating vortices and 
turbulence. This disturbed flow is often used as an indicator 
of the presence of disease and quantifiers of disturbance are 
used to monitor disease or treatment. More sensitive tech-
niques capable of detecting small degrees of flow disturbance 
in the slowly moving blood close to the vessel wall are 
needed in order to improve the efficiency of diagnosis and 
the outcome of medical treatments. In addition, it has long 
been recognised that flow conditions close to the vessel wall 
have an influence on disease initiation and growth and re-
searchers in this area have an interest in the measurement of 
the low blood velocity in this region.  

A popular instrument for non-invasive blood velocity es-
timation is the pulsed ultrasonic Doppler blood flow detector 
which determines blood velocity by measuring the Doppler 
shift in the frequency of ultrasound scattered by moving red 
blood cells flowing through a small volume (the ‘sample vol-
ume’) within a thin ultrasound beam projected through the 
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blood vessel from a transducer placed on the skin surface. 
The output of the instrument is a signal (the Doppler signal) 
in the audio frequency range whose frequency spectrum re-
flects the range of blood velocities within the sample volume.  
Flow disturbance results in an increase in the Doppler spec-
trum width which is used to detect atherosclerotic lesions in 
arteries. The resolution of the spectral estimator used limits 
the detection sensitivity of disturbance-induced spectral 
broadening. 

The Doppler signal is complex. Since the ultrasound is 
scattered from a random distribution of blood cells the Dop-
pler signal from blood is random.  Since the blood flow in 
arteries is pulsatile the blood velocity and therefore the Dop-
pler signal spectrum varies during each cardiac cycle.  In 
addition, ultrasound scattered from the pulsating vessel wall 
also gives rise to a low frequency Doppler signal with an 
amplitude orders of magnitude higher than the signal from 
blood.  

Commercially available Doppler instruments usually re-
move the signal reflected by the vessel wall with a high-pass 
filter. Unfortunately this filter also removes the low fre-
quency Doppler signals arising from slow moving blood, 
including that close to the vessel wall.  

There is a need for a method of signal segmentation - 
separating the signals from blood and wall - that reduces the 
loss of signal from slowly moving blood and therefore per-
mits the measurement of lower blood velocities. 

 
Much work has been carried out to investigate methods of 

separating blood and wall signals and computer simula-
tions/models of the signals from wall and blood have been 
valuable in the development of signal processing algorithms– 
for example [1-3]. However, although the simulations/models 
of Doppler signals from blood have been developed over 
many years and have characteristics very similar to real sig-
nals [4-11] wall signal models are relatively crude – single 
sinusoids or random signals. A simulator is required that gen-
erates a Doppler signal as from blood and vessel wall, having 
controllable characteristics similar to those found in practice. 

 
    II. METHOD 

 
An overview of the method is shown in Fig.1. A transmis-

sion line model of the lower limb arterial tree using the elec-
trical circuit simulation software SPICE has been developed 
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giving the local blood pressure (voltage analogue) and blood 
flow (current analogue) waveform at any arterial segment 
within the tree [12-13]. The radial vessel wall displacement 
waveform is calculated from the pressure waveform and the 
Doppler signal may be calculated from the wall velocity and 
wall/ultrasound-beam geometry. The Doppler signal from 
blood may be calculated using the blood velocity information 
and vessel/beam geometry. The two signals may then be 
summed to give the combined Doppler signal. 

For this first attempt at generating a quasi-realistic signal 
some simplifying limitations and approximations have been 
imposed. For the wall signal, the ultrasound beam position is 
restricted such that the beam axis intersects the vessel axis 
and to a sufficiently small width compared with the vessel 
diameter that the wall within the beam may be considered 
plane. The signal from the wall is also considered as arising 
from a single scattering surface. The wall is also considered 
elastic so that the wall displacement is proportional to the 
local blood pressure. The blood Doppler signal spectrum 
variation through the cardiac cycle is assumed to be domi-
nated by the variation in spectral mean frequency variation 
which in turn is proportional to the blood velocity variation 
and the spectral width is kept constant.  

The method of generating a blood Doppler signal under 
the above conditions from a blood velocity waveform has 
been described previously [9]. Briefly, the complex signal 
(the in-phase and quadrature signals) is given by: 
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where ab is an amplitude constant, rb(t) is a zero mean, unit 
standard deviation, Gaussian variable with constant band-
width centred on zero frequency and fm is the mean frequency 
variation through the cardiac cycle related to the  blood ve-
locity v(t) by: 
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where θ is the beam/vessel angle, fo is the transmitted fre-
quency and c (1540m/s) is the ultrasound propagation speed. 
 

The wall signal is generated by calculating the wall dis-
placement followed by the phase variation along the ultra-
sound beam and then the Doppler signal. The relationship 
between blood pressure (P) and radial wall displacement (R) 
is given by [14]: 
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where, E is the wall elastic modulus, Ri is the vessel internal 
radius and Ro the external radius. The component of wall 
displacement along the ultrasound beam is then: 
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where ( )tP  is the pressure waveform and P  is the mean 
pressure.  The phase variation in the reflected ultrasound, 
since a movement of λ/2 along the beam increases the round 
trip path by λ and the phase by 2π, is then: 
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and the wall Doppler signal is: 

 ( ) ( )( )tjats dww φexp=  (6) 

The combined Doppler signal is then given by: 

 ( ) ( ) ( )tststs wb +=  (7) 

with a blood-to-wall signal ratio of  20 log10(ab/aw) dB. 

 
III. TEST AND RESULTS 

 
In order to test the simulator, Doppler signals were gener-

ated using the equations (1-5) with inputs of the pressure and 
blood velocity  waveforms from the common femoral artery 
of the transmission line model [12-13] with E= 4×105Nm-2, 
Ri=0.27cm, Ro=0.323cm and ultrasound characteristics fo = 
5MHz, c =1540ms-1 and θ = 60o, the Doppler signal from the 
blood was simulated with a constant rms bandwidth of 
800Hz. The composite signal was then filtered by a 4-pole 
Butterworth high-pass filter with 3 dB cut-off frequencies of 
10, 40 and 200Hz as would be typical for the 
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model
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Fig. 1 Method of combined blood/wall Doppler signal generation. 



 

 
 ‘wall-thump’ filter of a Doppler ultrasound instrument. The 
wall-to-blood signal ratio of the simulated composite signal 
was 30dB and the signal was clipped to 4 times the root mean 
square amplitude of the blood signal. 

 
The blood velocity and pressure waveforms and corre-

sponding blood, wall and composite Doppler signals are 
shown in Fig. 2. 

 
The spectrograms of the high-pass filtered signals with 

spectrogram characteristics of 7.8ms, Hanning window with 
50% window overlap are shown in Fig. 3.  
 

IV. DISCUSSION 
 

The composite Doppler signal has a similar form to that 
observed in Doppler ultrasound instruments with the noise-
like blood Doppler signal superimposed on the lower fre-
quency high amplitude Doppler signal from the wall. The 
wall signal frequency is highest during the systolic rise and 
fall periods of the pressure pulse. The spectrograms show the 
blood flow spectrum with the low frequency vessel wall 
‘thump’ signal ‘breaking through’ when the filter cut-off fre-
quency is low and being removed by the filter with the higher 
cut-off frequency.  The simulator clearly has the characteris-
tics required. 
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Fig. 2-  The input waveforms and the output signals (from left to right and top to bottom): the common femoral artery (CFA) blood velocity wave-
form; the common femoral artery pressure waveform; the simulated in-phase Doppler signal arising from blood flow; the simulated in-phase Doppler 
signal produced by the vessel wall movement; and the composite (blood +wall) in-phase Doppler signal for a 30dB wall-to-blood signal ratio. 
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Fig. 3- Spectrograms of composite (blood + wall) simulated Doppler
signal filtered with a 4 pole Butterworth high-pass filter with the
following cut-off frequencies: a) 10 Hz; b) 40 Hz; and c) 200 Hz. 
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